Roll No.

E-313

M. A./M. Sc. (First Semester) EXAMINATION, Dec.-J an., 2020-21
MATHEMATICS
Paper Fifth
(Advanced Discrete M athematics-I)

Time : Three Hours]
[M aximum M arks: 80
[Minimum Pass Marks: 16
Note : A ttempt all Sections as directed.

$$
\text { Section-A } \quad 1 \text { each }
$$

(Objective/M ultiple C hoice Q uestions)
Note : A ttempt all questions.
Choose the correct answer :

1. The proposition $p \wedge(\sim p \vee q)$ is:
(a) A tautology
(b) A contradiction
(c) Logically equivalent to $\mathrm{p} \wedge \mathrm{q}$
(d) None of these
2. Let p denote " He is rich" and let q denote " He is happy". Write "He is neither rich nor happy" statement in symbolic form using p and q. Which of the following symbolic form is correct?
(a) $p \rightarrow \neg q$
(b) $\neg p \rightarrow \neg q$
(c) $q \rightarrow \neg p$
(d) $\neg p \leftrightarrow \neg q$
3. A semigroup $<\mathrm{M}>$ with an identity element with respect to operation (.) is called :
(a) M onoid
(b) Homomorphism
(c) Automorphism
(d) None of these
4. Every finite semigroup has an :
(a) Identity element
(b) Inverse element
(c) Idempotent element
(d) None of these
5. Let M be the set of all $n \times n$ matrices and let the binary operation * of M be taken as addition of matrices. Then $(\mathrm{M}, *)$ is a :
(a) Semigroup
(b) M onoid
(c) B oth (a) and (b)
(d) None of these
6. An equivalent relation R on a semigroup $\left(S,{ }^{*}\right)$ is called a congruence relation if :
(a) $a R b^{\prime}$ and $b R a^{\prime} \Rightarrow\left(a^{*} b^{\prime}\right) R\left(a^{\prime} * b\right)$
(b) $a^{\prime} R b$ and $b^{\prime} R a \Rightarrow\left(a^{\prime} * b\right) R\left(a * b^{\prime}\right)$
(c) $a R b$ and $a^{\prime} R b^{\prime} \Rightarrow(a * b) R\left(a^{\prime} * b^{\prime}\right)$
(d) $a R a^{\prime}$ and $a R b^{\prime} \Rightarrow(a * b) R\left(a^{\prime} * b^{\prime}\right)$
7. Union of two sub-semigroups of a semigroup $\left(S,{ }^{*}\right)$ is :
(a) Semigroup of $(S, *)$
(b) Sub-semigroup of $(S, *)$
(c) Sub-monoid of $(S, *)$
(d) $\quad N$ eed not be a sub-semigroup of ($\mathrm{S}, *$)
8. Which of the following statements is a proposition ?
(a) Get me a glass of milk.
(b) W hat is your name?
(c) The only odd prime number is 2 .
(d) God bless you!
9. Every finite subset of a lattice has :
(a) A LUB and GLB
(b) M any LUB's and a GLB
(c) M any LUB's and many LGB'S
(d) Either some LUB's or some GLB's
10. A self-complemented, distributive lattice is called:
(a) M odular lattice
(b) B oolean algebra
(c) Complete lattice
(d) Self-dual Iattice
11. The term sum-of-product in B oolean algebra means:
(a) AND function of several OR functions
(b) OR function of several AND functions
(c) AND function of several AND functions
(d) None of these
12. The B oolean expression $A+B C$ equals :
(a) $(A+B)(A+C)$
(b) $(A+B)(\bar{A}+C)$
(c) $(\bar{A}+B)(\bar{A}+C)$
(d) $(A+\bar{B})(A+\bar{C})$
13. The dual of Boolean expression $(a+1)(a+0)=a$ is:
(a) $a+0=a$
(b) $\mathrm{a} .0+\mathrm{a} .1=\mathrm{a}$
(c) $a+1=a$
(d) $a \cdot(1+0)=a$
14. If $<\mathrm{T}, *, \oplus>$ is lattice and if $\mathrm{S} \subseteq \mathrm{T}$, then $<\mathrm{S}, *, \oplus>$ is sublattice of $<\mathrm{T}, *, \oplus>$ if and only if :
(a) S is closed under the operation \oplus
(b) S is closed under the operation (*)
(c) S is associative under the operation (*)
(d) S is closed under operations $\left({ }^{*}\right)$ and \oplus
15. How many truth tables can be made from one function table?
(a) 1
(b) 2
(c) 3
(d) 4
16. In a lattice property $a \vee a=0, a \wedge a=a$ is called:
(a) Idempotent Laws
(b) Commutative Laws
(c) A bsorption Laws
(d) None of these
17. Let L be a language recognizable by a finite automation. The language REVERSE $(L)=\{w$ such that w is the reverse of v where $V \in L\}$ is a :
(a) Regular language
(b) Context-free language
(c) Context-sensitive language
(d) None of these
18. A regular grammar contains only productions of the form $\alpha \rightarrow \beta$, where :
(a) $\quad|\alpha| \leq|\beta|$
(b) $\quad|\alpha|<|\beta|$
(c) $\quad|\alpha|>|\beta|$
(d) $\quad|\alpha| \geq|\beta|$
19. Which of the following regular expression identifiers are true?
(a) $(r+s)^{*}=r^{*}+s^{*}$
(b) $r^{*} . s^{*}=r^{*}+s^{*}$
(c) $\left(r^{*}\right)^{*}=r^{*}$
(d) All of these
20. If $L(a)=\left\{a^{p}: p\right.$ is prime $\}$, then :
(a) $L(a)$ is regular
(b) $L(a)$ is reduced grammar
(c) L (a) is not regular
(d) None of these

Section-B
$1 \frac{1}{2}$ each

(Very Short Answer Type Questions)

Note: A ttempt all questions. A nswer in 2-3 sentences.

1. Define Tautology.
2. Define semi-group with one example.
3. Define submonoids.
4. Give example of a sub-semigroup.
5. Define distributive lattices.
6. Define sublattice.
7. Define minterm or minimal boolean function.
8. Define join-irreducible elements.
9. Define context-free grammar.
10. Define type zero grammar.

Section-C

$2 \frac{1}{2}$ each

(Short Answer Type Q uestions)

Note: A ttempt all questions. A nswer in less than 75 words.

1. Define contradiction. Verify that the proposition $(p \wedge q) \wedge \neg(p \vee q)$ is contradiction.
2. Consider the set Q of rational numbers, and let * be the operation on Q defined by :

$$
a * b=a+b-a b
$$

Is $(Q, *)$ a semigroup ? Is it commutative ?
3. Define direct product of semigroups.
4. Define monoid homomorphism.
5. Draw the logic circuit with inputs a, b, c and output f where :

$$
f=a b c+a^{\prime} c^{\prime}+b^{\prime} c^{\prime}
$$

6. Prove that let (L, \leq) be a lattice for any $a, b, c \in L$, the following holds :

$$
a \leq c \Rightarrow a \vee(b \wedge c) \leq(a \vee b) \wedge c
$$

7. Simplify the Boolean expression :

$$
E\left(x_{1} x_{2}\right)=x_{1} x_{2}+x_{1}^{\prime} x_{2}^{\prime}+x_{1}^{\prime} x_{2}
$$

8. Show that the order relation \leq is partial order relation in a B oolean algebra.
9. Define the following terms :
(a) Context-sensitive grammar
(b) Regular grammar
10. Show that the language :

$$
L(G)=\left\{a^{n} b^{n} c^{n}: n \geq 1\right\}
$$

can be generated by $G=(N, T, P, S)$ where $N(S, B, C)$; $T=(a, b, c) . P=(S \rightarrow a s B c, S \rightarrow a B c, c b \rightarrow B c$, $a B \rightarrow a b, b B \rightarrow b b, b c \rightarrow b c, c c \rightarrow c c$) and S is the starting symbol.

Section-D

4 each

(L ong Answer Type Questions)

Note: A ttempt all questions. Answer using less than 150 words for each.

1. What is Quantifiers ? Explain different types of quantifiers.

Or
Show that the following argument is not valid :

$$
\begin{gathered}
p \\
\neg q \vee r \\
\neg p \Rightarrow q \\
\frac{r}{\neg}
\end{gathered}
$$

where $\neg=$ negation.
P.T. O.
2. State and prove fundamental theorem of homomorphism for semigroup.

Or
Prove that if $\left(\mathrm{S},,^{*}\right)$ and $\left(\mathrm{T}, *^{\prime}\right)$ are monoids, then $\left(\mathrm{S} \times \mathrm{T}, *^{\prime}\right)$ is also a monoid where binary operation $*$ " defined on $S \times T$ by :

$$
\begin{gathered}
\left(s_{1}, t_{1}\right) *^{\prime \prime}\left(s_{2}, t_{2}\right)=\left(s_{1} * s_{2}, t_{1} *^{\prime} t_{2}\right) \\
\forall(s, t) \text { and }\left(s_{2}, t_{2}\right) \in S \times T
\end{gathered}
$$

3. In a B oolean algebra ($B,+,$.$) ; state and prove :$
(a) Absorption law
(b) De M organ's law

Or
Prove that the direct product of any two distributive lattices is a distributive lattice.
4. Show that the algebra of Boolean circuits is a Boolean algebra.
Or

Draw the switching circuit of the function:

$$
f(x, y, z)=x \cdot y^{\prime}(z+x)+y \cdot\left(y^{\prime}+z\right)
$$

and replace it by a simplified one.
5. State and prove pumping lemma for regular sets.
Or

Construct a grammar for the language :

$$
L=\left\{a^{m} b^{m}: n \neq m, n>0\right\}
$$

E-313

