Roll No.

E-313

M. A./M. Sc. (First Semester) EXAMINATION, Dec.-Jan., 2020-21

MATHEMATICS

Paper Fifth

(Advanced Discrete Mathematics—I)

Time : Three Hours]

[Maximum Marks : 80

[Minimum Pass Marks : 16

Note : Attempt all Sections as directed.

Section—A

1 each

(Objective/Multiple Choice Questions)

Note : Attempt all questions.

Choose the correct answer :

- 1. The proposition $p \land (\sim p \lor q)$ is :
 - (a) A tautology
 - (b) A contradiction
 - (c) Logically equivalent to $p \wedge q$
 - (d) None of these

- 2. Let p denote "He is rich" and let q denote "He is happy". Write "He is neither rich nor happy" statement in symbolic form using p and q. Which of the following symbolic form is correct ?
 - (a) $p \rightarrow \neg q$
 - (b) $\neg p \rightarrow \neg q$
 - (c) $q \rightarrow \neg p$
 - (d) $\neg p \leftrightarrow \neg q$
- 3. A semigroup < M > with an identity element with respect to operation (.) is called :
 - (a) Monoid
 - (b) Homomorphism
 - (c) Automorphism
 - (d) None of these
- 4. Every finite semigroup has an :
 - (a) Identity element
 - (b) Inverse element
 - (c) Idempotent element
 - (d) None of these
- Let M be the set of all n × n matrices and let the binary operation * of M be taken as addition of matrices. Then (M, *) is a :
 - (a) Semigroup
 - (b) Monoid
 - (c) Both (a) and (b)
 - (d) None of these

- 6. An equivalent relation R on a semigroup (S, *) is called a congruence relation if :
 - (a) aRb' and $bRa' \Rightarrow (a * b') R (a' * b)$
 - (b) $a \operatorname{R} b$ and $b \operatorname{R} a \Rightarrow (a' * b) \operatorname{R} (a * b')$
 - (c) aRb and $a'Rb' \Rightarrow (a * b) R (a' * b')$
 - (d) $a\mathbf{R}a'$ and $a\mathbf{R}b' \Rightarrow (a * b) \mathbf{R} (a' * b')$
- 7. Union of two sub-semigroups of a semigroup (S, *) is :
 - (a) Semigroup of (S, *)
 - (b) Sub-semigroup of (S, *)
 - (c) Sub-monoid of (S, *)
 - (d) Need not be a sub-semigroup of (S, *)
- 8. Which of the following statements is a proposition ?
 - (a) Get me a glass of milk.
 - (b) What is your name ?
 - (c) The only odd prime number is 2.
 - (d) God bless you !
- 9. Every finite subset of a lattice has :
 - (a) A LUB and GLB
 - (b) Many LUB's and a GLB
 - (c) Many LUB's and many LGB'S
 - (d) Either some LUB's or some GLB's
- 10. A self-complemented, distributive lattice is called :
 - (a) Modular lattice
 - (b) Boolean algebra
 - (c) Complete lattice
 - (d) Self-dual lattice

- 11. The term sum-of-product in Boolean algebra means :
 - (a) AND function of several OR functions
 - (b) OR function of several AND functions
 - (c) AND function of several AND functions
 - (d) None of these
- 12. The Boolean expression A + BC equals :
 - (a) (A + B) (A + C)
 - (b) $(A+B) (\overline{A}+C)$
 - (c) $(\overline{A} + B)(\overline{A} + C)$
 - (d) $(A + \overline{B})(A + \overline{C})$
- 13. The dual of Boolean expression (a + 1) (a + 0) = a is :
 - (a) a + 0 = a
 - (b) a.0 + a.1 = a
 - (c) a + 1 = a
 - (d) a.(1+0) = a
- 14. If < T, *, \oplus > is lattice and if S \subseteq T, then < S, *, \oplus > is sublattice of < T, *, \oplus > if and only if :
 - (a) S is closed under the operation \oplus
 - (b) S is closed under the operation (*)
 - (c) S is associative under the operation (*)
 - (d) S is closed under operations (*) and \oplus
- 15. How many truth tables can be made from one function table ?
 - (a) 1
 - (b) 2
 - (c) 3
 - (d) 4

- 16. In a lattice property $a \lor a = 0, a \land a = a$ is called :
 - (a) Idempotent Laws
 - (b) Commutative Laws
 - (c) Absorption Laws
 - (d) None of these
- 17. Let L be a language recognizable by a finite automation. The language REVERSE (L) = {w such that w is the reverse of v where V ∈ L } is a :
 - (a) Regular language
 - (b) Context-free language
 - (c) Context-sensitive language
 - (d) None of these
- 18. A regular grammar contains only productions of the form $\alpha \to \beta$, where :
 - (a) $|\alpha| \leq |\beta|$
 - (b) $|\alpha| < |\beta|$
 - (c) $|\alpha| > |\beta|$
 - (d) $|\alpha| \ge |\beta|$
- 19. Which of the following regular expression identifiers are true ?
 - (a) $(r + s)^* = r^* + s^*$
 - (b) $r^*.s^* = r^* + s^*$
 - (c) $(r^*)^* = r^*$
 - (d) All of these

20. If L (*a*) = $\{a^p : p \text{ is prime}\}$, then :

- (a) L(a) is regular
- (b) L(a) is reduced grammar
- (c) L(a) is not regular
- (d) None of these

Section—B

 $1\frac{1}{2}$ each

(Very Short Answer Type Questions)

Note : Attempt all questions. Answer in 2-3 sentences.

- 1. Define Tautology.
- 2. Define semi-group with one example.
- 3. Define submonoids.
- 4. Give example of a sub-semigroup.
- 5. Define distributive lattices.
- 6. Define sublattice.
- 7. Define minterm or minimal boolean function.
- 8. Define join-irreducible elements.
- 9. Define context-free grammar.
- 10. Define type zero grammar.

Section—C $2\frac{1}{2}$ each

(Short Answer Type Questions)

Note : Attempt all questions. Answer in less than 75 words.

- 1. Define contradiction. Verify that the proposition $(p \land q) \land \neg (p \lor q)$ is contradiction.
- 2. Consider the set Q of rational numbers, and let * be the operation on Q defined by :

$$a * b = a + b - ab$$

Is (Q, *) a semigroup ? Is it commutative ?

- 3. Define direct product of semigroups.
- 4. Define monoid homomorphism.
- 5. Draw the logic circuit with inputs *a*, *b*, *c* and output *f* where : f = abc + a'c' + b'c'
- 6. Prove that let (L, \leq) be a lattice for any $a, b, c \in L$, the following holds :

 $a \leq c \Rightarrow a \lor (b \land c) \leq (a \lor b) \land c$

7. Simplify the Boolean expression :

$$E(x_1x_2) = x_1x_2 + x_1'x_2' + x_1'x_2$$

- 8. Show that the order relation \leq is partial order relation in a Boolean algebra.
- 9. Define the following terms :
 - (a) Context-sensitive grammar
 - (b) Regular grammar
- 10. Show that the language :

$$L(G) = \{a^{n}b^{n}c^{n} : n \ge 1\}$$

can be generated by G = (N, T, P, S) where N (S, B, C); T = (a, b, c). $P = (S \rightarrow asBc, S \rightarrow aBc, cb \rightarrow Bc,$ $aB \rightarrow ab, bB \rightarrow bb, bc \rightarrow bc, cc \rightarrow cc)$ and S is the starting symbol.

Section—D 4 each

(Long Answer Type Questions)

- **Note :** Attempt all questions. Answer using less than 150 words for each.
- 1. What is Quantifiers ? Explain different types of quantifiers.

Or

Show that the following argument is not valid :

$$\frac{p}{\neg q \lor r} \\ \frac{\neg p \Rightarrow q}{r}$$

where \neg = negation.

2. State and prove fundamental theorem of homomorphism for semigroup.

Or

Prove that if (S, *) and (T, *') are monoids, then (S \times T, *') is also a monoid where binary operation *" defined on S \times T by :

$$(s_1, t_1) *'' (s_2, t_2) = (s_1 * s_2, t_1 *' t_2)$$

 $\forall (s, t) \text{ and } (s_2, t_2) \in \mathbf{S} \times \mathbf{T}$

- 3. In a Boolean algebra (B, +, .); state and prove :
 - (a) Absorption law
 - (b) De Morgan's law

Or

Prove that the direct product of any two distributive lattices is a distributive lattice.

4. Show that the algebra of Boolean circuits is a Boolean algebra.

Or

Draw the switching circuit of the function :

 $f(x, y, z) = x \cdot y'(z + x) + y \cdot (y' + z)$

and replace it by a simplified one.

5. State and prove pumping lemma for regular sets.

Or

Construct a grammar for the language :

$$\mathcal{L} = \{a^m b^m : n \neq m, n > 0\}$$

E-313